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iv For Your Information 

Course Description 

This lecture focuses on structural equation modeling (SEM), a statistical technique that combines 
elements of traditional multivariate models, such as regression analysis, factor analysis, and simultaneous 
equation modeling. SEM can explicitly account for less than perfect reliability of the observed variables, 
providing analyses of attenuation and estimation bias due to measurement error. The SEM approach is 
sometimes also called causal modeling because competing models can be postulated about the data and 
tested against each other. Many applications of SEM can be found in the social sciences, where 
measurement error and uncertain causal conditions are commonly encountered. This presentation 
demonstrates the structural equation modeling approach with several sets of empirical textbook data. The 
final example demonstrates a more sophisticated re-analysis of one of the earlier data sets. 

To learn more… 

 

For information on other courses in the curriculum, contact the SAS Education 
Division at 1-800-333-7660, or send e-mail to training@sas.com. You can also 
find this information on the Web at support.sas.com/training/ as well as in the 
Training Course Catalog. 

 

 

For a list of other SAS books that relate to the topics covered in this  
Course Notes, USA customers can contact our SAS Publishing Department at  
1-800-727-3228 or send e-mail to sasbook@sas.com. Customers outside the 
USA, please contact your local SAS office. 

Also, see the Publications Catalog on the Web at support.sas.com/pubs for a 
complete list of books and a convenient order form. 

 



 For Your Information v 

Prerequisites 

Before attending this course, you should be familiar with using regression analysis, factor analysis, or 
both. 
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1.1 Introduction 

Course Outline
1. Welcome to the Webcast
2. Structural Equation Modeling – Overview
3. Two Easy Examples

a. Regression Analysis
b. Factor Analysis

4. Confirmatory Models and Assessing Fit
5. More Advanced Examples

a. Structural Equation Model (Incl. Measurement 
Model)

b. Effects of Errors-in-Measurement on Regression
6. Conclusion

3  

The course presents several examples of what kind of interesting analyses we can perform with structural 
equation modeling. For each example, the course demonstrates how the analysis can be implemented with 
PROC CALIS. 

1.01 Multiple Choice Poll
What experience have you had with structural equation 
modeling (SEM) so far?
a. No experience with SEM
b. Beginner
c. Occasional applied user
d. Experienced applied user
e. SEM textbook writer and/or software developer
f. Other

5  
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1.02 Multiple Choice Poll
How familiar are you with linear regression and factor 
analysis? 
a. Never heard of either.
b. Learned about regression in statistics class.
c. Use linear regression at least once per year with real 

data.
d. Use factor analysis at least once per year with real 

data.
e. Use both regression and factor analysis techniques 

frequently.

6  

1.03 Poll
Have you used PROC CALIS before?

Yes
No

7  
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1.04 Multiple Choice Poll
Please indicate your main learning objective for this 
structural equation modeling course.
a. I am curious about SEM and want to find out what it 

can be used for.
b. I want to learn to use PROC CALIS.
c. My advisor requires that I use SEM for my thesis work.
d. I want to use SEM to analyze applied marketing data.
e. I have some other complex multivariate data to model.
f. What is this latent variable stuff good for anyways?
g. Other.

8  
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1.2 Structural Equation Modeling—Overview 

What Is Structural Equation Modeling?
SEM = General approach to multivariate data analysis!

aka, Analysis of Covariance Structures,
aka, Causal Modeling,
aka, LISREL Modeling.

Purpose: Study complex relationships among variables, where 
some variables can be hypothetical or unobserved.

Approach: SEM is model based. We try one or more competing 
models – SEM analytics show which ones fit, where there are 
redundancies, and can help pinpoint what particular model 
aspects are in conflict with the data.

Difficulty: Modern SEM software is easy to use. Nonstatisticians 
can now solve estimation and testing problems that once would 
have required the services of several specialists.

10  

SEM – Some Origins
Psychology – Factor Analysis: 
Spearman (1904), Thurstone (1935, 1947)
Human Genetics – Regression Analysis:
Galton (1889) 
Biology – Path Modeling: 
S. Wright (1934) 
Economics – Simultaneous Equation Modeling: 
Haavelmo (1943), Koopmans (1953), Wold (1954)
Statistics – Method of Maximum Likelihood Estimation: 
R.A. Fisher (1921), Lawley (1940) 
Synthesis into Modern SEM and Factor Analysis: 
Jöreskog (1970), Lawley & Maxwell (1971), Goldberger 
& Duncan (1973)

11  
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Common Terms in SEM
Types of Variables:

Measured, Observed, Manifest
versus

Hypothetical, Unobserved, Latent

Endogenous Variable—Exogenous Variable (in SEM)
but

Dependent Variable—Independent Variable (in Regression)

12

z y x

Variable present in the 
data file and not missing

Not in data file

Where are the variables 
in the model?

 

1.05 Multiple Choice Poll
An endogenous variable is
a. the dependent variable in at least one of the model 

equations
b. the terminating (final) variable in a chain of predictions
c. a variable in the middle of a chain of predictions
d. a variable used to predict other variables
e. I'm not sure.

14  
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1.06 Multiple Choice Poll
A manifest variable is
a. a variable with actual observed data
b. a variable that can be measured (at least in principle)
c. a hypothetical variable
d. a predictor in a regression equation
e. the dependent variable of a regression equation
f. I'm not sure.

16  



 1.3  Example 1: Regression Analysis 1-9 

Copyright © 2010 by Werner Wothke, Ph.D. 

1.3 Example 1: Regression Analysis 

Example 1: Multiple Regression
A. Application: Predicting Job Performance of Farm 

Managers
B. Use summary data (covariance matrix) by Warren, 

White, and Fuller 1974
C. Illustrate Covariance Matrix Input with PROC REG 

and PROC CALIS
D. Illustrate PROC REG and PROC CALIS Parameter 

Estimates
E. Introduce PROC CALIS Model Specification in 

LINEQS Format

19  

Example 1: Multiple Regression
Warren, White, and Fuller (1974) studied 98 managers 
of farm cooperatives. Four of the measurements made 
on each manager were:

Performance: A 24-item test of performance related to 
“planning, organization, controlling, coordinating and directing.”
Knowledge: A 26-item test of knowledge of “economic phases 
of management directed toward profit-making ... and product 
knowledge.”
ValueOrientation: A 30-item test of “tendency to rationally 
evaluate means to an economic end.”
JobSatisfaction: An 11-item test of “gratification obtained ... 
from performing the managerial role.”

A fifth measure, PastTraining, was reported but will not 
be employed in this example.

20  
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Warren, White, and Fuller (1974) Data

21

This SAS file must be 
saved with attribute 

TYPE=COV.

 

This file can be found in the worked examples as Warren5Variables.sas7bdat. 

Prediction Model: Job Performance 
of Farm Managers

22

One-way arrows stand 
for regression weights.

e is the 
prediction error.

Two-way arrows stand for 
correlations (or covariances) 
among predictors.

ValueOrientation

Knowledge

Performance

JobSatisfaction

e
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Linear Regression Model: Using PROC REG

23

TITLE "Example 1a: Linear Regression with PROC REG";

PROC REG DATA=SEMdata.Warren5variables;
MODEL
Performance = Knowledge

ValueOrientation
JobSatisfaction;

RUN;
QUIT;

PROC REG will continue 
to run interactively. QUIT 
ends PROC REG.

Notice the two-level filename. 
In order to run this code, 
you must first define a 
SAS LIBNAME reference.

 

Parameter Estimates: PROC REG

Prediction Equation for Job Performance:
Performance =  -0.83 + 

0.26*Knowledge + 
0.15*ValueOrientation +
0.05*JobSatisfaction,                       v(e) = 0.01

24

JobSatisfaction is not 
an important predictor 
of Job Performance.
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1.07 Multiple Choice Poll
How many PROC REG subcommands are required 
to specify a linear regression with PROC REG?
a. None
b. 1
c. 2
d. 3
e. 4
f. More than 4

26  

PROC CALIS DATA=<input-file> <options>;

VAR <list of variables>;

LINEQS
<equation>, … , <equation>;

STD
<variance-terms>;

COV
<covariance-terms>;

RUN;

LINEQS Model Interface in PROC CALIS

28

Easy model specification with PROC CALIS –
only five model components are needed.

 

 The PROC CALIS statement starts the SAS procedure; the four statements VAR, LINEQS, STD, 
and COV are subcommands of its LINEQS interface.  

PROC CALIS comes with four interfaces for specifying structural equation factor models 
(LINEQS, RAM, COSAN, and FACTOR). For the purpose of this introductory Webcast, the 
LINEQS interface is completely general and seemingly the easiest to use.  



 1.3  Example 1: Regression Analysis 1-13 

Copyright © 2010 by Werner Wothke, Ph.D. 

PROC CALIS DATA=<input-file> <options>;

VAR <list of variables>;

LINEQS
<equation>, … , <equation>;

STD
<variance-terms>;

COV
<covariance-terms>;

RUN;

LINEQS Model Interface in PROC CALIS

29

The PROC CALIS statement 
begins the model specs. 
<inputfile> refers to the data file. 
<options> specify computational 
and statistical methods.

 

PROC CALIS DATA=<input-file> <options>;

VAR <list of variables>;

LINEQS
<equation>, … , <equation>;

STD
<variance-terms>;

COV
<covariance-terms>;

RUN;

LINEQS Model Interface in PROC CALIS

30

VAR (optional statement)
to select and reorder 
variables from <input-file>
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PROC CALIS DATA=<input-file> <options>;

VAR <list of variables>;

LINEQS
<equation>, … , <equation>;

STD
<variance-terms>;

COV
<covariance-terms>;

RUN;

LINEQS Model Interface in PROC CALIS

31

Put all model equations 
in the LINEQS section, 
separated by commas.

 

PROC CALIS DATA=<input-file> <options>;

VAR <list of variables>;

LINEQS
<equation>, … , <equation>;

STD
<variance-terms>;

COV
<covariance-terms>;

RUN;

LINEQS Model Interface in PROC CALIS

32

Variances of unobserved 
exogenous variables to 
be listed here

 



 1.3  Example 1: Regression Analysis 1-15 

Copyright © 2010 by Werner Wothke, Ph.D. 

PROC CALIS DATA=<input-file> <options>;

VAR <list of variables>;

LINEQS
<equation>, … , <equation>;

STD
<variance-terms>;

COV
<covariance-terms>;

RUN;

LINEQS Model Interface in PROC CALIS

33

Covariances of unobserved 
exogenous variables to be 
listed here

 

ValueOrientation

Knowledge

Performance

JobSatisfaction

e_var

e
b2

b1

b3

Prediction Model of Job Performance of 
Farm Managers (Parameter Labels Added)

34  

In contrast to PROC REG, PROC CALIS (LINEQS) expects the regression weight and residual variance 
parameters to have their own unique names (b1-b3, e_var). 



1-16 Chapter 1  Introduction to Structural Equation Modeling  

Copyright © 2010 by Werner Wothke, Ph.D. 

Linear Regression Model: Using PROC CALIS

35

TITLE "Example 1b: Linear Regression with PROC CALIS";

PROC CALIS DATA=SEMdata.Warren5variables COVARIANCE; 
VAR

Performance Knowledge 
ValueOrientation JobSatisfaction;

LINEQS
Performance = b1 Knowledge + 

b2 ValueOrientation + 
b3 JobSatisfaction + e1;

STD
e1 = e_var;

RUN;
The COVARIANCE
option picks covariance 
matrix analysis 
(default: correlation 
matrix analysis).

 

TITLE "Example 1b: Linear Regression with PROC CALIS";

PROC CALIS DATA=SEMdata.Warren5variables COVARIANCE; 
VAR

Performance Knowledge 
ValueOrientation JobSatisfaction;

LINEQS
Performance = b1 Knowledge + 

b2 ValueOrientation + 
b3 JobSatisfaction + e1;

STD
e1 = e_var;

RUN;

Linear Regression Model: Using PROC CALIS

36

The regression model is specified in the LINEQS section. 
The residual term (e1) and the names (b1-b3) of the 
regression parameters must be given explicitly.
Convention: Residual terms of observed endogenous 
variables start with the letter e.
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Linear Regression Model: Using PROC CALIS

37

TITLE "Example 1b: Linear Regression with PROC CALIS";

PROC CALIS DATA=SEMdata.Warren5variables COVARIANCE; 
VAR

Performance Knowledge 
ValueOrientation JobSatisfaction;

LINEQS
Performance = b1 Knowledge + 

b2 ValueOrientation + 
b3 JobSatisfaction + e1;

STD
e1 = e_var;

RUN; The name of the residual term is 
given on the left side of STD 
equation; the label of the variance 
parameter goes on the right side.

 

This model contains only one unobserved exogenous variable (e1). Thus, there a no covariance terms to 
model, and no COV subcommand is needed. 

Parameter Estimates: PROC CALIS
This is the estimated regression equation for a deviation 
score model. Estimates and standard errors are identical 
at three decimal places to those obtained with PROC 
REG. The t-values (> 2) indicate that Performance is 
predicted by Knowledge and ValueOrientation, not 
JobSatisfaction.

38  

 The standard errors slightly differ from their OLS regression counterparts. The reason is that 
PROC REG gives exact standard errors, even in small samples, while the standard errors obtained 
by PROC CALIS are asymptotically correct. 
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Standardized Regression Estimates

In standard deviation terms, Knowledge and 
ValueOrientation contribute to the regression with similar 
weights. The regression equation determines 40% of the 
variance of Performance.

39  

PROC CALIS computes and displays the standardized solution by default. 

1.08 Multiple Choice Poll
How many PROC CALIS subcommands are required 
to specify a linear regression with PROC CALIS?
a. None
b. 1
c. 2
d. 3
e. 4
f. More than 4

41  
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LINEQS Defaults and Peculiarities
Some standard assumptions of linear regression analysis 
are built into LINEQS: 
1. Observed exogenous variables (Knowledge,   
ValueOrientation and JobSatisfaction) are 
automatically assumed to be correlated with each other. 

2. The error term e1 is treated as independent of the 
predictor variables. 

43 continued...  

LINEQS Defaults and Peculiarities
Built-in differences from PROC REG:
1. The error term e1 must be specified explicitly (CALIS 

convention: error terms of observed variables must 
start with the letter e).

2. Regression parameters (b1, b2, b3) must be named 
in the model specification.

3. As traditional in SEM, the LINEQS equations are for 
deviation scores, in other words, without the intercept 
term. PROC CALIS centers all variables automatically.

4. The order of variables in the PROC CALIS output is 
controlled by the VAR statement.

5. Model estimation is iterative.

44  
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Iterative Estimation Process
Vector of Initial Estimates

Parameter      Estimate    Type
1    b1              0.25818    _GAMMA_[1:1]
2    b2              0.14502    _GAMMA_[1:2]
3    b3              0.04859    _GAMMA_[1:3]
4    e_var           0.01255    _PHI_[4:4]

45 continued...  

The iterative estimation process computes stepwise updates of provisional parameter estimates, until the 
fit of the model to the sample data cannot be improved any further. 

Iterative Estimation Process
Optimization Start

Active Constraints                              0  
Objective Function                              0
Max Abs Gradient Element             1.505748E-14  
...

Optimization Results
Iterations                                     0
...
Max Abs Gradient Element            1.505748E-14
...
ABSGCONV convergence criterion satisfied.

46

This number 
should be 
really close 
to zero.

Important message, displayed in both list 
output and SAS log. Make sure it is there!
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Example 1: Summary
Tasks accomplished:
1. Set up a multiple regression model with both 

PROC REG and PROC CALIS
2. Estimated the regression parameters both ways
3. Verified that the results were comparable 
4. Inspected iterative model fitting by PROC CALIS

47  

1.09 Multiple Choice Poll
Which PROC CALIS output message indicates that an 
iterative solution has been found?
a. Covariance Structure Analysis: Maximum Likelihood 

Estimation
b. Manifest Variable Equations with Estimates
c. Vector of Initial Estimates
d. ABSGCONV convergence criterion satisfied
e. None of the above
f. Not sure

49  
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1.4 Example 2: Factor Analysis 

Example 2: Confirmatory Factor Analysis
A. Application: Studying dimensions of variation in 

human abilities
B. Use raw data from Holzinger and Swineford (1939)
C. Illustrate raw data input with PROC CALIS
D. Introduce latent variables
E. Introduce tests of fit
F. Introduce modification indices
G. Introduce model-based statistical testing
H. Introduce nested models

53  

 Factor analysis frequently serves as the  measurement portion in structural equation models. 

Confirmatory Factor Analysis: Model 1
Holzinger and Swineford (1939) administered 26  
psychological aptitude tests to 301 seventh- and eighth-grade 
students in two Chicago schools. Here are the tests selected 
for the example and the types of abilities they were meant 
to measure:

54

Ability Test 

Visual 
VisualPerception

PaperFormBoard
FlagsLozenges_B

Verbal 
ParagraphComprehension

SentenceCompletion

WordMeaning

Speed 
StraightOrCurvedCapitals
Addition
CountingDots
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CFA, Path Diagram Notation: Model 1

Visual

Visual
Perception

Paper
FormBoard_B

Flags
Lozenges_B

WordMeaning

Paragraph
Comprehension

Sentence
Completion

e1 e2 e3

e4

e5

e6

Verbal

1

1

1 1

1

1

1

Factor analysis, N=145
Holzinger and Swineford (1939)

Grant-White Highschool

CountingDots

StraightOrCurved
Capitals

Addition

e7

e8

e9

Speed

1
1

1

1

1

55

Latent variables 
(esp. factors) 
shown in ellipses.

 

Measurement Specification with LINEQS

LINEQS
VisualPerception = a1 F_Visual + e1,
PaperFormBoard   = a2 F_Visual + e2,
FlagsLozenges = a3 F_Visual + e3,

56

Visual

Visual
Perception

Paper
FormBoard

Flags
Lozenges

e1 e2 e3

a1 a2
a3

Common factor 
for all three 
observed 
variables

Factor names 
start with F in 
PROC CALIS.

Separate 
equations for 
three endogenous 
variables
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Specifying Factor Correlations with LINEQS
1

Visual

1

Verbal

1

Speed

phi1

phi3

phi2

STD
F_Visual F_Verbal F_Speed = 1.0 1.0 1.0,
...;

COV
F_Visual F_Verbal F_Speed = phi1 phi2 phi3;

57

Factor variances 
are 1.0 for 
correlation matrix.

Factor correlation terms go into the COV section.
 

There is some freedom about setting the scale of the latent variable. We need to fix the scale of each 
somehow in order to estimate the model. Typically, this is either done by fixing one factor loading to a 
positive constant, or by fixing the variance of the latent variable to unity (1.0).  

Here we set the variances of the latent variables to unity. Since the latent variables are thereby 
standardized, the phi1-phi3 parameters are now correlation terms. 

Specifying Measurement Residuals

e1 e2 e3

e4

e5

e6

e7

e8

e9

STD
...,
e1 e2 e3 e4 e5 e6 e7 e8 e9 = e_var1 e_var2 e_var3
e_var4 e_var5 e_var6 e_var7 e_var8 e_var9;

58

List of residual 
terms followed by 
list of variances
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CFA, PROC CALIS/LINEQS Notation: Model 1

59

PROC CALIS DATA=SEMdata.HolzingerSwinefordGW 
COVARIANCE RESIDUAL MODIFICATION; 
VAR <...> ;
LINEQS

VisualPerception         = a1 F_Visual + e1,
PaperFormBoard           = a2 F_Visual + e2,
FlagsLozenges            = a3 F_Visual + e3,
ParagraphComprehension   = b1 F_Verbal + e4,
SentenceCompletion       = b2 F_Verbal + e5,
WordMeaning              = b3 F_Verbal + e6,
StraightOrCurvedCapitals = c1 F_Speed  + e7,
Addition                 = c2 F_Speed  + e8,
CountingDots             = c3 F_Speed  + e9;

STD
F_Visual F_Verbal F_Speed = 1.0 1.0 1.0,
e1 e2 e3 e4 e5 e6 e7 e8 e9 = e_var1 e_var2 e_var3

e_var4 e_var5 e_var6 e_var7 e_var8 e_var9;
COV

F_Visual F_Verbal F_Speed = phi1 phi2 phi3;
RUN;

Residual 
statistics and 
modification 
indices

Nine 
measurement
equations

 

1.10 Multiple Choice Poll
How many LINEQS equations are needed for a factor 
analysis?
a. Nine, just like the previous slide
b. One for each observed variable in the model
c. One for each factor in the model
d. One for each variance term in the model
e. None of the above
f. Not sure

61  
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Model Fit in SEM
The chi-square statistic is central to assessing fit with Maximum 
Likelihood estimation, and many other fit statistics are based on it. 
The standard       measure in SEM is

Here, N is the sample size, p the number of observed variables, 
S the sample covariance matrix, and    the fitted model covariance 
matrix.
This gives the test statistic for the null hypotheses that the 
predicted matrix    has the specified model structure against the 
alternative that     is unconstrained.
Degrees of freedom for the model:
df = number of elements in the lower half of the covariance matrix 
[p(p+1)/2] minus number of estimated parameters63

2χ

( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ −⎟

⎠
⎞⎜

⎝
⎛+−−= S  S lnˆlnˆtrace12

ML ∑∑ 1− pNχ

∑̂

∑̂
∑̂

Always zero or 
positive. The 
term is zero only 
when the match 
is exact.

 

The 2χ  statistic is a discrepancy measure. It compares the sample covariance matrix with the implied 
model covariance matrix computed from the model structure and all the model parameters. 

Degrees of Freedom for CFA Model 1
From General Modeling Information Section...
The CALIS Procedure 
Covariance Structure Analysis: 

Maximum Likelihood Estimation 
Levenberg-Marquardt Optimization 
Scaling Update of More (1978) 

Parameter Estimates 21
Functions (Observations) 45

64

DF = 45 – 21
= 24
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CALIS, CFA Model 1: Fit Table
Fit Function 0.3337
Goodness of Fit Index (GFI) 0.9322
GFI Adjusted for Degrees of Freedom (AGFI)0.8729
Root Mean Square Residual (RMR) 15.9393
Parsimonious GFI (Mulaik, 1989) 0.6215
Chi-Square 48.0536
Chi-Square DF 24
Pr > Chi-Square 0.0025
Independence Model Chi-Square 502.86
Independence Model Chi-Square DF 36
RMSEA Estimate 0.0834
RMSEA 90% Lower Confidence Limit 0.0483

…and many more fit statistics on list output.
65

Pick out the chi-square 
section. This chi-square 
is significant. What does 
this mean?

 

Chi Square Test: Model 1

66

48.05
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Standardized Residual Moments: Part 1

67

Asymptotically Standardized Residual Matrix

Visual     PaperForm         Flags      Paragraph      Sentence
Perception         Board    Lozenges_B  Comprehension    Completion

VisualPerc   0.000000000  -0.490645663   0.634454156   -0.376267466  -0.853201760
PaperFormB  -0.490645663   0.000000000  -0.133256120   -0.026665527   0.224463460
FlagsLozen   0.634454156  -0.133256120   0.000000000    0.505250934   0.901260142
ParagraphC  -0.376267466  -0.026665527   0.505250934    0.000000000  -0.303368250
SentenceCo  -0.853201760   0.224463460   0.901260142   -0.303368250   0.000000000
WordMeanin  -0.530010952   0.187307568   0.474116387    0.577008266  -0.268196124
StraightOr   4.098583857   2.825690487   1.450078999    1.811782623   2.670254862
Addition    -3.084483125  -1.069283994  -2.383424431    0.166892980   1.043444072
CountingDo  -0.219601213  -0.619535105  -2.101756596   -2.939679987  -0.642256508

Residual covariances, divided by 
their approximate standard error

 

Recall that residual statistics were requested on the PROC CALIS command line by the “RESIDUAL” 
keyword. In the output listing, we need to find the section on Asymptotically Standardized Residuals. 
These are fitted residuals of the covariance matrix, divided by their asymptotic standard errors, essentially 
z-values. 

Standardized Residual Moments: Part 2

68

Asymptotically Standardized Residual Matrix

StraightOr
Curved

WordMeaning      Capitals      Addition  CountingDots

VisualPerc  -0.530010952   4.098583857  -3.084483125  -0.219601213
PaperFormB   0.187307568   2.825690487  -1.069283994  -0.619535105
FlagsLozen   0.474116387   1.450078999  -2.383424431  -2.101756596
ParagraphC   0.577008266   1.811782623   0.166892980  -2.939679987
SentenceCo  -0.268196124   2.670254862   1.043444072  -0.642256508
WordMeanin   0.000000000   1.066742617  -0.196651078  -2.124940910
StraightOr   1.066742617   0.000000000  -2.695501076  -2.962213789
Addition    -0.196651078  -2.695501076   0.000000000   5.460518790
CountingDo  -2.124940910  -2.962213789   5.460518790   0.000000000
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1.11 Multiple Choice Poll
A large chi-square fit statistic means that
a. the model fits well
b. the model fits poorly
c. I'm not sure.

70  

Modification Indices (Table)
Univariate Tests for Constant Constraints
Lagrange Multiplier or Wald Index 
/ Probability / Approx Change of Value

F_Visual F_Verbal   F_Speed
...<snip>... 
StraightOr        30.2118   8.0378   76.3854 [c1]
CurvedCapitals     0.0000   0.0046     .

25.8495   9.0906     .
Addition          10.3031   0.0413   57.7158 [c2]

0.0013   0.8390     .
-9.2881   0.4163     .

CountingDots       6.2954   8.5986   83.7834 [c3]
0.0121   0.0034     .
-6.8744  -5.4114     .

72

Wald Index, or 
expected chi-square 
increase if parameter 
is fixed at 0.

MI’s or Lagrange 
Multipliers, or expected 
chi-square decrease if 
parameter is freed.

 

The “MODIFICATION” keyword on the PROC CALIS command line produces two types of diagnostics, 
Lagrange Multipliers and Wald indices. PROC CALIS prints these statistics in the same table. Lagrange 
multipliers are printed in place of fixed parameters; they indicate how much better the model would fit if 
the related parameter was freely estimated. Wald indices are printed in the place of free parameters; these 
statistics tell how much worse the model would fit if the parameter was fixed at zero. 
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Modification Indices (Largest Ones)
Rank Order of the 9 Largest Lagrange Multipliers in GAMMA

Row                       Column  Chi-Square Pr > ChiSq

StraightOrCurvedCaps    F_Visual  30.21180     <.0001
Addition                F_Visual  10.30305     0.0013
CountingDots            F_Verbal   8.59856     0.0034
StraightOrCurvedCaps    F_Verbal   8.03778     0.0046
CountingDots            F_Visual   6.29538     0.0121
SentenceCompletion      F_Speed    2.69124     0.1009
FlagsLozenges_B         F_Speed    2.22937     0.1354
VisualPerception        F_Verbal   0.91473     0.3389
FlagsLozenges_B         F_Verbal   0.73742     0.3905

73  

Modified Factor Model 2: Path Notation

74

Visual

Visual
Perception

Paper
FormBoard

Flags
Lozenges

Word
Meaning

Paragraph
Comprehension

Sentence
Completion

e1 e2 e3

e4

e5

e6

Verbal

1

1

1 1

1

1

1Counting
Dots

StraightOr
CurvedCapitals

Addition

e7

e8

e9

Speed

1
1

1

1

1

a4

Factor analysis, N=145
Holzinger and Swineford (1939)

Grant-White Highschool

 



 1.4  Example 2: Factor Analysis 1-31 

Copyright © 2010 by Werner Wothke, Ph.D. 

CFA, PROC CALIS/LINEQS Notation: Model 2

75

PROC CALIS DATA=SEMdata.HolzingerSwinefordGW 
COVARIANCE RESIDUAL; 
VAR ...;
LINEQS

VisualPerception         = a1 F_Visual + e1,
PaperFormBoard           = a2 F_Visual + e2,
FlagsLozenges_B          = a3 F_Visual + e3,
ParagraphComprehension   = b1 F_Verbal + e4,
SentenceCompletion       = b2 F_Verbal + e5,
WordMeaning              = b3 F_Verbal + e6,
StraightOrCurvedCapitals = a4 F_Visual +

c1 F_Speed  + e7,
Addition                 = c2 F_Speed  + e8,
CountingDots             = c3 F_Speed  + e9;

STD
F_Visual F_Verbal F_Speed = 1.0 1.0 1.0,
e1 - e9 = 9 * e_var:;

COV
F_Visual F_Verbal F_Speed = phi1 - phi3;

RUN;

 

CFA of Nine Psychological Variables, Model 2, 
Holzinger-Swineford data.
The CALIS Procedure
Covariance Structure Analysis: 

Maximum Likelihood Estimation
Levenberg-Marquardt Optimization
Scaling Update of More (1978)
Parameter Estimates                   22
Functions (Observations)              45

Degrees of Freedom for CFA Model 2

76

One parameter more 
than Model 1 – one 
degree of freedom less

 

Degrees of freedom calculation for this model: df = 45 - 22 = 23.  
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CALIS, CFA Model 2: Fit Table
Fit Function 0.1427
Goodness of Fit Index (GFI) 0.9703
GFI Adjusted for Degrees of Freedom(AGFI) 0.9418
Root Mean Square Residual (RMR) 5.6412
Parsimonious GFI (Mulaik, 1989) 0.6199
Chi-Square 20.5494
Chi-Square DF 23
Pr > Chi-Square 0.6086
Independence Model Chi-Square 502.86
Independence Model Chi-Square DF 36
RMSEA Estimate 0.0000
RMSEA 90% Lower Confidence Limit .

77

The chi-square statistic indicates that this 
model fits. In 61% of similar samples, a 
larger chi-square value would be found by 
chance alone.

 

 The 2χ  statistic falls into the neighborhood of the degrees of freedom. This is what should be 
expected of a well-fitting model. 

1.12 Multiple Choice Poll
A modification index (or Lagrange Multiplier) is
a. an estimate of how much fit can be improved 

if a particular parameter is estimated
b. an estimate of how much fit will suffer if a 

particular parameter is constrained to zero
c. I'm not sure.

79  
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Nested Models
Suppose there are two models for the same data:
A. a base model with q1 free parameters
B. a more general model with the same q1 free 

parameters, plus an additional set of q2 free 
parameters

Models A and B are considered to be nested. The nesting 
relationship is in the parameters – Model A can be 
thought to be a more constrained version of Model B.

81  

Comparing Nested Models

If the more constrained model is true, then the difference 
in chi-square statistics between the two models follows, 
again, a chi-square distribution. The degrees of freedom 
for the chi-square difference equals the difference in 
model dfs.

82  

 Conversely, if the 2χ -difference is significant then the more constrained model is probably 
incorrect. 
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Some Parameter Estimates: CFA Model 2 
Manifest Variable Equations with Estimates

VisualPerception         =   5.0319*F_Visual +  1.0000 e1
Std Err                      0.5889 a1
t Value                      8.5441

PaperFormBoard           =   1.5377*F_Visual +  1.0000 e2
Std Err                      0.2499 a2
t Value                      6.1541

FlagsLozenges_B          =   5.0830*F_Visual      +  1.0000 e3
Std Err                      0.7264 a3
t Value                      6.9974

…
StraightOrCurvedCaps = 17.7806*F_Visual + 15.9489*F_Speed + 1.0000 e7
Std Err                 3.1673 a4          3.1797 c1
t Value                 5.6139             5.0159

…

83

Estimates should be 
in the right direction;
t-values should be 
large.

 

Results (Standardized Estimates)

Visual

r² = .53
Visual

Perception

r² = .30
Paper

FormBoard

r² = .37
Flags

Lozenges

r² = .68
Word

Meaning

r² = .75

Paragraph
Comprehension

r² = .70
Sentence

Completion

e1 e2 e3

e4

e5

e6

Verbal

.73 .54 .61

.86

.83

.82
r² = .73

Counting
Dots

r² = .58

StraightOr
CurvedCapitals

r² = .47

Addition

e7

e8

e9

Speed

.43

.69

.86

.57

.24

.39

.48

84

Factors are not 
perfectly 
correlated – the 
data support the 
notion of separate 
abilities.

All factor loadings are 
reasonably large and positive. 

The verbal tests 
have higher r² 
values. Perhaps 
these tests are 
longer.
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Example 2: Summary
Tasks accomplished:
1. Set up a theory-driven factor model for nine variables, 

in other words, a model containing latent or 
unobserved variables

2. Estimated parameters and determined that the first 
model did not fit the data

3. Determined the source of the misfit by residual 
analysis and modification indices

4. Modified the model accordingly and estimated its 
parameters

5. Accepted the fit of new model and interpreted the 
results

85  
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1.5 Example3: Structural Equation Model 

Example 3: Structural Equation Model
A. Application: Studying determinants of political 

alienation and its progress over time
B. Use summary data by Wheaton, Muthén, Alwin, 

and Summers (1977)
C. Entertain model with both structural and 

measurement components
D. Special modeling considerations for time-dependent 

variables
E. More about fit testing

88  

Alienation Data: Wheaton et al. (1977)
Longitudinal Study of 932 persons from 1966 to 1971.
Determination of reliability and stability of alienation, a 
social psychological variable measured by attitude scales.
For this example, six of Wheaton’s measures are used:

89

Variable Description 
Anomia67 1967 score on the Anomia scale

Anomia71 1971 Anomia score

Powerlessness67 1967 score on the Powerlessness scale
Powerlessness71 1971 Powerlessness score

YearsOfSchool66 Years of schooling reported in 1966

SocioEconomicIndex Duncan’s Socioeconomic index administered 
in 1966
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Wheaton et al. (1977): Summary Data

90

Socio
YearsOf Economic

Obs _type_ Anomia67 Powerlessness67 Anomia71 Powerlessness71  School66   Index

1  n       932.00      932.00       932.00      932.00       932.00    932.00
2  corr      1.00         .            .           .            .         .
3  corr      0.66        1.00          .           .            .         .
4  corr      0.56        0.47         1.00         .            .         .
5  corr      0.44        0.52         0.67        1.00          .         .
6  corr     -0.36       -0.41        -0.35       -0.37         1.00       .
7  corr     -0.30       -0.29        -0.29       -0.28         0.54      1.00
8  STD       3.44        3.06         3.54        3.16         3.10     21.22
9  mean     13.61       14.76        14.13       14.90        10.90     37.49

The _name_
column has been 
removed here to 
save space.

 

In the summary data file, the entries of “STD” type (in line 8) are really sample standard deviations. 
Please remember that this is different from the PROC CALIS subcommand “STD”, which is for variance 
terms. 

Wheaton: Most General Model

Anomia
67

Powerless
67

Anomia
71

Powerless
71

YearsOf
School66

SocioEco
Index

F_Alienation
67

F_Alienation
71

e1 e2 e3 e4

F_SES
66

e6e5

d2d1

91

SES 66 is 
a leading 
indicator.

Autocorrelated 
residuals

Disturbance, 
prediction error of 
latent endogenous 
variable. Name must 
start with the letter d.
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Wheaton: Model with Parameter Labels

92

Anomia
67

Powerless
67

Anomia
71

Powerless
71

YearsOf
School66

SocioEco
Index

F_Alienation
67

F_Alienation
71

e_var1

e1

e_var2

e2

e_var3

e3

e_var4

e4

F_SES
66

e6e5

p21p11

1

b3

b2
b1

d2d1

c24c13

 

Wheaton: LINEQS Specification
LINEQS
Anomia67            = 1.0 F_Alienation67 + e1,
Powerlessness67     =  p1 F_Alienation67 + e2,

Anomia71            = 1.0 F_Alienation71 + e3,
Powerlessness71     =  p2 F_Alienation71 + e4,

YearsOfSchool66     = 1.0 F_SES66 + e5,
SocioEconomicIndex  =  s1 F_SES66 + e6,

F_Alienation67      =  b1 F_SES66 + d1,
F_Alienation71      =  

b2 F_SES66 + b3 F_Alienation67 + d2;

93  
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LINEQS
Anomia67            = 1.0 F_Alienation67 + e1,
Powerlessness67     =  p1 F_Alienation67 + e2,

Anomia71            = 1.0 F_Alienation71 + e3,
Powerlessness71     =  p2 F_Alienation71 + e4,

YearsOfSchool66     = 1.0 F_SES66 + e5,
SocioEconomicIndex  =  s1 F_SES66 + e6,

F_Alienation67      =  b1 F_SES66 + d1,
F_Alienation71      =  

b2 F_SES66 + b3 F_Alienation67 + d2;

Wheaton: LINEQS Specification

94

Measurement 
model coefficients 
can be constrained 
as time-invariant.

 

Wheaton: STD and COV Parameter Specs
STD
F_SES66 = V_SES,
e1 e2 e3 e4 e5 e6 = 
e_var1 e_var2 e_var3 e_var4 e_var5 e_var6,

d1 d2 = d_var1 d_var2;
COV
e1 e3 = c13,
e2 e4 = c24;

RUN;

95  
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STD
F_SES66 = V_SES,
e1 e2 e3 e4 e5 e6 = 
e_var1 e_var2 e_var3 e_var4 e_var5 e_var6,

d1 d2 = d_var1 d_var2;
COV
e1 e3 = c13,
e2 e4 = c24;

RUN;

Wheaton: STD and COV Parameter Specs

96

Some time-invariant models 
call for constraints of residual 
variances. These can be 
specified in the STD section.

 

STD
F_SES66 = V_SES,
e1 e2 e3 e4 e5 e6 = 
e_var1 e_var2 e_var3 e_var4 e_var5 e_var6,

d1 d2 = d_var1 d_var2;
COV
e1 e3 = c13,
e2 e4 = c24;

RUN;

Wheaton: STD and COV Parameter Specs

97

For models with uncorrelated 
residuals, remove this entire 
COV section.

Some time-invariant models call for 
constraints of residual variances. These 
can be specified in the STD section.
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Wheaton: Most General Model, Fit
SEM: Wheaton, Most General Model                                30

The CALIS Procedure
Covariance Structure Analysis: Maximum Likelihood Estimation

Fit Function                                          0.0051
Chi-Square                                            4.7701
Chi-Square DF                                              4
Pr > Chi-Square                                       0.3117
Independence Model Chi-Square                         2131.8
Independence Model Chi-Square DF                          15
RMSEA Estimate                                        0.0144
RMSEA 90% Lower Confidence Limit                           .
RMSEA 90% Upper Confidence Limit                      0.0533
ECVI Estimate                                         0.0419
ECVI 90% Lower Confidence Limit                            .
ECVI 90% Upper Confidence Limit                       0.0525
Probability of Close Fit                              0.9281

98

The most general 
model fits okay. 
Let’s see what 
some more 
restricted models 
will do.

 

Wheaton: Time-Invariance Constraints (Input)
LINEQS
Anomia67            = 1.0 F_Alienation67 + e1,
Powerlessness67     =  p1 F_Alienation67 + e2,

Anomia71            = 1.0 F_Alienation71 + e3,
Powerlessness71     =  p1 F_Alienation71 + e4,

…
STD

…
e1 - e6 = e_var1 e_var2 e_var1 e_var2 e_var5 e_var6,

…

99  
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Wheaton: Time-Invariance Constraints (Output)
The CALIS Procedure (Model Specification and Initial Values Section)
Covariance Structure Analysis: Pattern and Initial Values

Manifest Variable Equations with Initial Estimates
Anomia67           =   1.0000 F_Alienation67     +  1.0000 e1
Powerlessness67    =        .*F_Alienation67     +  1.0000 e2

p1
Anomia71           =   1.0000 F_Alienation71     +  1.0000 e3
Powerlessness71    =        .*F_Alienation71     +  1.0000 e4

p1
...
Variances of Exogenous Variables

Variable           Parameter      Estimate
F_SES66            V_SES                 .
e1                 e_var1                .
e2                 e_var2                .
e3                 e_var1                .
e4                 e_var2                . 
...

100  

1.13 Multiple Choice Poll
The difference between the time-invariant and the “most 
general” model is as follows:
a. The time-invariant model has the same measurement 

equations in 67 and 71.
b. The time-invariant model has the same set of residual 

variances in 67 and 71.
c. In the time-invariant model, both measurement 

equations and residual variances are the same in 67 
and 71.

d. The time-invariant model has correlated residuals.
e. I'm not sure.

102  



 1.5  Example3: Structural Equation Model 1-43 

Copyright © 2010 by Werner Wothke, Ph.D. 

 Uncorrelated 
Residuals 

Correlated Residuals Difference 

Time-Invariant 2 73.0766, 9dfχ = =  2 6.1095, 7dfχ = =  2 66.9671, 2dfχ = =  
Time-Varying 2 71.5438, 6dfχ = =  2 4.7701, 4dfχ = =  2 66.7737, 2dfχ = =  
Difference 2 1.5328, 3dfχ = =  2 1.3394, 3dfχ = =   
 

Wheaton: Chi-Square Model Fit and 
LR Chi-Square Tests

Conclusions:
1. There is evidence for autocorrelation of residuals –

models with uncorrelated residuals fit considerably worse.
2. There is some support for time-invariant measurement –

time-invariant models fit no worse (statistically) than time-
varying measurement models.

104

This is shown by the large 
column differences.

This is shown by the small 
row differences.

 

Information Criteria to Assess Model Fit
Akaike's Information Criterion (AIC)  
This is a criterion for selecting the best model among a number of 
candidate models. The model that yields the smallest value of AIC is 
considered the best.  

2 2AIC dfχ= − ⋅  
Consistent Akaike's Information Criterion (CAIC)  
This is another criterion, similar to AIC, for selecting the best model 
among alternatives. CAIC imposed a stricter penalty on model 
complexity when sample sizes are large. 

2 (ln( ) 1)CAIC N dfχ= − + ⋅  
Schwarz's Bayesian Criterion (SBC)  
This is another criterion, similar to AIC, for selecting the best model. 
SBC imposes a stricter penalty on model complexity when sample 
sizes are large. 

2 ln( )SBC N dfχ= − ⋅  
 105  

The intent of the information criteria is to identify models that replicate better than others. This means 
first of all that we must actually have multiple models to use these criteria. Secondly, models that fit best 
to sample data are not always the models that replicate best. Using the information criteria accomplishes a 
trade-off between estimation bias and uncertainty as they balance model fit on both these criteria. 

 Information criteria can be used to evaluate models that are not nested.   
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Wheaton: Model Fit According to 
Information Criteria

Notes:
Each of the three information criteria favors the time-invariant 
model.
We would expect this model to replicate or cross-validate well 
with new sample data.
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Model AIC CAIC SBC

Most General -3.222 -26.5972 -22.5792

Time-Invariant -7.8905 -48.7518 -41.7518
Uncorrelated 
Residuals

59.5438 24.5198 30.5198

Time-Invariant 
& Uncorrelated 
Residuals

55.0766 2.5406 11.5406

 

Anomia
67

Powerless
67

Anomia
71

Powerless
71

YearsOf
School66

SocioEco
Index

F_Alienation
67

F_Alienation
71

4.61

e1

2.78

e2

4.61

e3

2.78

e4

6.79
F_SES

66

264.26
e6

2.81
e5

.951.00.951.00

1.00 5.23

.60

-.22
-.58

3.98

d2

4.91

d1

.321.65

Wheaton: Parameter Estimates, Time-Invariant 
Model

107

Large positive 
autoregressive 
effect of Alienation

But note the negative 
regression weights between 
Alienation and SES!
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Wheaton, Standardized Estimates, Time-Invariant 
Model

108

r² = .61

Anomia
67

r² = .70

Powerless
67

r² = .63

Anomia
71

r² = .72

Powerless
71

r² = .71

YearsOf
School66

r² = .41

SocioEco
Index

r² = .32

F_Alienation
67

r² = .50

F_Alienation
71

e1 e2 e3 e4

F_SES
66

e6e5

.85.79.84.78

.84 .64

.57

-.20
-.57

d2d1

.11.36

50% of the variance of 
Alienation determined 
by “history”

Residual auto-
correlation 
substantial for 
Anomia

 

PROC CALIS Output (Measurement Model)
Covariance Structure Analysis: Maximum Likelihood Estimation

Manifest Variable Equations with Estimates

Anomia67           =  1.0000 F_Alienation67 + 1.0000 e1
Powerlessness67    =  0.9544*F_Alienation67 + 1.0000 e2
Std Err               0.0523 p1
t Value              18.2556

Anomia71           =  1.0000 F_Alienation71 + 1.0000 e3
Powerlessness71    =  0.9544*F_Alienation71 + 1.0000 e4
Std Err               0.0523 p1
t Value              18.2556

YearsOfSchool66    =  1.0000 F_SES66        + 1.0000 e5
SocioEconomicIndex =  5.2290*F_SES66        + 1.0000 e6
Std Err               0.4229 s1
t Value              12.3652

109

Is this the time-invariant 
model? How can we tell?
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PROC CALIS OUTPUT (Structural Model)
Covariance Structure Analysis: Maximum Likelihood Estimation

Latent Variable Equations with Estimates

F_Alienation67     = -0.5833*F_SES66        +  1.0000 d1
Std Err               0.0560 b1
t Value             -10.4236

F_Alienation71     =  0.5955*F_Alienation67 + -0.2190*F_SES66
Std Err               0.0472 b3                0.0514 b2
t Value              12.6240                  -4.2632

+  1.0000 d2

110

Cool, regressions among 
unobserved variables!

 

Wheaton: Asymptotically Standardized 
Residual Matrix

111

SEM: Wheaton, Time-Invariant Measurement                     
Anomia67  Powerlessness67      Anomia71

Anomia67            -0.060061348      0.729927201  -0.051298262
Powerlessness67      0.729927201     -0.032747610   0.897225295
Anomia71            -0.051298262      0.897225295   0.059113256
Powerlessness71     -0.883389142      0.051352815  -0.736453922
YearsOfSchool66      1.217289084     -1.270143495   0.055115253
SocioEconomicIndex  -1.113169201      1.143759617  -1.413361725

Socio
YearsOf       Economic

Powerlessness71      School66         Index
Anomia67               -0.883389142   1.217289084  -1.113169201
Powerlessness67         0.051352815  -1.270143495   1.143759617
Anomia71               -0.736453922   0.055115253  -1.413361725
Powerlessness71         0.033733409   0.515612093   0.442256742
YearsOfSchool66         0.515612093   0.000000000   0.000000000
SocioEconomicIndex      0.442256742   0.000000000   0.000000000

Any indication of misfit in this table?
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Example 3: Summary
Tasks accomplished:
1. Set up several competing models for time-dependent 

variables, conceptually and with PROC CALIS
2. Models included measurement and structural 

components
3. Some models were time-invariant, some had 

autocorrelated residuals
4. Models were compared by chi-square statistics and 

information criteria
5. Picked a winning model and interpreted the results

112  

1.14 Multiple Choice Poll
The preferred model
a. has a small fit chi-square
b. has few parameters
c. replicates well
d. All of the above.

114  
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1.6 Example4: Effects of Errors-in-Measurement on 
Regression 

Example 4: Warren et al., Regression with 
Unobserved Variables

A. Application: Predicting Job Performance of 
Farm Managers. 

B. Demonstrate regression with unobserved variables, 
to estimate and examine the effects of measurement 
error.

C. Obtain parameters for further “what-if” analysis; 
for instance,
a) Is the low r-square of 0.40 in Example 1 due 

to lack of reliability of the dependent variable?
b) Are the estimated regression weights of 

Example 1 true or biased? 
D. Demonstrate use of very strict parameter constraints, 

made possible by virtue of the measurement design.
118  

Warren9Variables: Split-Half Versions of 
Original Test Scores

119

Variable Explanation 

Performance_1 12-item subtest of Role Performance
Performance_2 12-item subtest of Role Performance
Knowledge_1 13-item subtest of Knowledge
Knowledge_2 13-item subtest of Knowledge

ValueOrientation_1 15-item subtest of Value Orientation
ValueOrientation_2 15-item subtest of Value Orientation

Satisfaction_1 5-item subtest of Role Satisfaction
Satisfaction_2 6-item subtest of Role Satisfaction
past-training Degree of formal education
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The Effect of Shortening or Lengthening a Test
Statistical effects of changing the length of a test:
Lord, F.M. and Novick, M.R. 1968. Statistical Theories of 
Mental Test Scores. Reading, MA: Addison-Wesley.

Suppose:
Two tests, X and Y, differing only in length, with

LENGTH(Y) = w⋅LENGTH(X)

Then, by Lord & Novick, chapter 4:
σ2(X) = σ2(τx) + σ2(εx), and
σ2(Y) = σ2(τy) + σ2(εy)

= w2⋅σ2(τx) + w⋅σ2(εx)

120  

Path Coefficient Modeling of Test Length
σ2(X) = σ2(τ) + σ2(εx)

121

σ2(Y) = w2⋅σ2(τ) + w⋅σ2(εx)

v-e

eXtau 11

v-e

eYtau 1w
w ⋅
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Warren9Variables: Graphical Specification

122

F_Performance

Performance_2
ve_p / 2

e2 0.51

Performance_1
ve_p / 2

e1 0.5
1

F_Value
Orientation

Value
Orientation 1

ve_vo / 2
e5

Value
Orientation 2

ve_vo / 2
e6

0.5
1

0.5 1

F_Knowledge

Knowledge_1
ve_k / 2

e3

Knowledge_2
ve_k / 2

e4

0.5
1

0.5 1

F_Satisfaction

Satisfaction_1
ve_s * 5/11

e7

Satisfaction_2
ve_s * 6/11

e8

5 /11
1

6 /11
1

d1
1

 

This model is highly constrained, courtesy of the measurement design and formal results of classical test 
theory (e.g., Lord & Novick, 1968). 

Warren9Variables: CALIS Specification (1/2)

123

LINEQS
Performance_1       = 0.5 F_Performance       + e_p1,
Performance_2       = 0.5 F_Performance       + e_p2,
Knowledge_1         = 0.5 F_Knowledge         + e_k1,
Knowledge_2         = 0.5 F_Knowledge         + e_k2,
ValueOrientation_1  = 0.5 F_ValueOrientation  + e_vo1,
ValueOrientation_2  = 0.5 F_ValueOrientation  + e_vo2,
Satisfaction_1      = 0.454545 F_Satisfaction + e_s1,
Satisfaction_2      = 0.545454 F_Satisfaction + e_s2,

F_Performance = b1 F_Knowledge + b2 F_ValueOrientation
+ b3 F_Satisfaction + d1;

STD
e_p1 e_p2     e_k1 e_k2    e_vo1 e_vo2    e_s1 e_s2 = 
ve_p1 ve_p2   ve_k1 ve_k2  ve_vo1 ve_vo2  ve_s1 ve_s2,

d1 F_Knowledge F_ValueOrientation F_Satisfaction = 
v_d1 v_K v_VO v_S;

COV
F_Knowledge F_ValueOrientation F_Satisfaction = phi1 - phi3;

continued...  
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Warren9Variables: CALIS Specification (2/2)

124

PARAMETERS /* Hypothetical error variance terms of original  */
/* scales; start values must be set by modeler    */

ve_p ve_k ve_vo ve_s = 0.01 0.01 0.01 0.01;

ve_p1  = 0.5 * ve_p;      /* SAS programming statements */
ve_p2  = 0.5 * ve_p;      /*   express error variances  */
ve_k1  = 0.5 * ve_k;      /*   of eight split scales    */
ve_k2  = 0.5 * ve_k;      /*   as exact functions of    */
ve_vo1 = 0.5 * ve_vo;     /*   hypothetical error       */
ve_vo2 = 0.5 * ve_vo;     /*   variance terms of the    */
ve_s1  = 0.454545 * ve_s; /*   four original scales.    */
ve_s2  = 0.545454 * ve_s;

RUN;

 

Warren9Variables: Model Fit

Comment:
The model fit is acceptable.

125

...
Chi-Square                                   26.9670
Chi-Square DF                                     22
Pr > Chi-Square                               0.2125
...
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1.15 Multiple Answer Poll
How do you fix a parameter with PROC CALIS?
a. Use special syntax to constrain the parameter values.
b. Just type the parameter value in the model 

specification.
c. PROC CALIS does not allow parameters to be fixed.
d. Both options (a) and (b).
e. I'm not sure.

127  

Warren9variables: Structural Parameter 
Estimates Compared to 
Example 1

Predictor Variable Regression 
Controlled for Error 

(PROC CALIS)

Regression without 
Error Model 
(PROC REG)

Knowledge 0.3899 (0.1393) 0.2582 (0.0544)

Value Orientation 0.1800 (0.0838) 0.1450 (0.0356)

Satisfaction 0.0561 (0.0535) 0.0486 (0.0387)

129  



 1.6  Example4: Effects of Errors-in-Measurement on Regression 1-53 

Copyright © 2010 by Werner Wothke, Ph.D. 

Modeled Variances of Latent Variables

Variable Performance Knowledge Value 
Orientation

Satisfaction

σ2(τ) 0.0688 0.1268 0.3096 0.2831

σ2(e) 0.0149 0.0810 0.1751 0.0774

rxx 0.82 0.61 0.64 0.79

130

PROC CALIS 
DATA=SemLib.Warren9variables 
COVARIANCE PLATCOV;

Reliability estimates for 
example 1:
rxx = σ2(τ) / [σ2(τ) + σ2(e)]

Prints variances 
and covariances 
of latent variables.

 

Warren9variables: Variance Estimates

131

Variances of Exogenous Variables
Standard

Variable           Parameter      Estimate         Error    t Value
F_Knowledge        v_K             0.12680       0.03203       3.96
F_ValueOrientation v_VO            0.30960       0.07400       4.18
F_Satisfaction     v_S             0.28313       0.05294       5.35
e_p1               ve_p1           0.00745       0.00107       6.96
e_p2               ve_p2           0.00745       0.00107       6.96
e_k1               ve_k1           0.04050       0.00582       6.96
e_k2               ve_k2           0.04050       0.00582       6.96
e_vo1              ve_vo1          0.08755       0.01257       6.96
e_vo2              ve_vo2          0.08755       0.01257       6.96
e_s1               ve_s1           0.03517       0.00505       6.96
e_s2               ve_s2           0.04220       0.00606       6.96
d1                 v_d1            0.02260       0.00851       2.66
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F_Performance  =
0.5293*F_Knowledge  +  0.3819*F_ValueOrientation

b1                     b2
+  0.1138*F_Satisfaction   +  0.5732 d1

b3

Squared Multiple Correlations

Error         Total
Variable                Variance      Variance    R-Square
Performance_1            0.00745       0.02465      0.6978
Performance_2            0.00745       0.02465      0.6978
Knowledge_1              0.04050       0.07220      0.4391
Knowledge_2              0.04050       0.07220      0.4391
ValueOrientation_1       0.08755       0.16495      0.4692
ValueOrientation_2       0.08755       0.16495      0.4692
Satisfaction_1           0.03517       0.09367      0.6245
Satisfaction_2           0.04220       0.12644      0.6662
F_Performance            0.02260       0.06880      0.6715

Warren9variables: Standardized Estimates

132

Hypothetical R-square for 100% 
reliable variables, up from 0.40.

Considerable measurement 
error in these “split” variables!

 

1.16 Multiple Choice Poll
In Example 4, the R-square of the factor F_Performance 
is larger than that of the observed variable Performance 
of Example 1 because
a. measurement error is eliminated from the structural 

equation
b. the sample is larger, so sampling error is reduced
c. the reliability of the observed predictor variables was 

increased by lengthening them
d. I’m not sure.

134  
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Example 4: Summary
Tasks accomplished:
1. Set up model to study effect of measurement error 

in regression
2. Used split versions of original variables as multiple 

indicators of latent variables
3. Constrained parameter estimates according to 

measurement model
4. Obtained an acceptable model
5. Found that predictability of JobPerformance

could potentially be as high as R-square=0.67

136  
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1.7 Conclusion 

Conclusions
Course accomplishments:
1. Introduced Structural Equation Modeling in relation 

to regression analysis, factor analysis, simultaneous 
equations

2. Showed how to set up Structural Equation Models 
with PROC CALIS

3. Discussed model fit by comparing covariance 
matrices, and considered chi-square statistics, 
information criteria, and residual analysis

4. Demonstrated several different types of modeling 
applications

138  

Comments
Several components of the standard SEM curriculum 
were omitted due to time constraints: 

Model identification 
Non-recursive models
Other fit statistics that are currently in use
Methods for nonnormal data
Methods for ordinal-categorical data
Multi-group analyses
Modeling with means and intercepts
Model replication
Power analysis

139  
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Current Trends
Current trends in SEM methodology research:
1. Statistical models and methodologies for missing data
2. Combinations of latent trait and latent class 

approaches
3. Bayesian models to deal with small sample sizes
4. Non-linear measurement and structural models 

(such as IRT)
5. Extensions for non-random sampling, such as 

multi-level models

140  
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Solutions to Student Activities (Polls/Quizzes) 

1.07 Multiple Choice Poll – Correct Answer
How many PROC REG subcommands are required 
to specify a linear regression with PROC REG?
a. None
b. 1
c. 2
d. 3
e. 4
f. More than 4

27  

1.08 Multiple Choice Poll – Correct Answer
How many PROC CALIS subcommands are required 
to specify a linear regression with PROC CALIS?
a. None
b. 1
c. 2
d. 3
e. 4
f. More than 4

42  
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1.09 Multiple Choice Poll – Correct Answer
Which PROC CALIS output message indicates that an 
iterative solution has been found?
a. Covariance Structure Analysis: Maximum Likelihood 

Estimation
b. Manifest Variable Equations with Estimates
c. Vector of Initial Estimates
d. ABSGCONV convergence criterion satisfied
e. None of the above
f. Not sure

50  

1.10 Multiple Choice Poll – Correct Answer
How many LINEQS equations are needed for a factor 
analysis?
a. Nine, just like the previous slide
b. One for each observed variable in the model
c. One for each factor in the model
d. One for each variance term in the model
e. None of the above
f. Not sure

62  
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1.11 Multiple Choice Poll – Correct Answer
A large chi-square fit statistic means that
a. the model fits well
b. the model fits poorly
c. I'm not sure.

71  

1.12 Multiple Choice Poll – Correct Answer
A modification index (or Lagrange Multiplier) is
a. an estimate of how much fit can be improved 

if a particular parameter is estimated
b. an estimate of how much fit will suffer if a 

particular parameter is constrained to zero
c. I'm not sure.

80  
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1.13 Multiple Choice Poll – Correct Answer
The difference between the time-invariant and the “most 
general” model is as follows:
a. The time-invariant model has the same measurement 

equations in 67 and 71.
b. The time-invariant model has the same set of residual 

variances in 67 and 71.
c. In the time-invariant model, both measurement 

equations and residual variances are the same in 67 
and 71.

d. The time-invariant model has correlated residuals.
e. I'm not sure.

103  

1.14 Multiple Choice Poll – Correct Answer
The preferred model
a. has a small fit chi-square
b. has few parameters
c. replicates well
d. All of the above.

115  
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1.15 Multiple Answer Poll – Correct Answer
How do you fix a parameter with PROC CALIS?
a. Use special syntax to constrain the parameter values.
b. Just type the parameter value in the model 

specification.
c. PROC CALIS does not allow parameters to be fixed.
d. Both options (a) and (b).
e. I'm not sure.

128  

1.16 Multiple Choice Poll – Correct Answer
In Example 4, the R-square of the factor F_Performance 
is larger than that of the observed variable Performance 
of Example 1 because
a. measurement error is eliminated from the structural 

equation
b. the sample is larger, so sampling error is reduced
c. the reliability of the observed predictor variables was 

increased by lengthening them
d. I’m not sure.

135  
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